Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Rev Assoc Med Bras (1992) ; 70(3): e20231167, 2024.
Article En | MEDLINE | ID: mdl-38656003

OBJECTIVE: The aim of this study was to analyze possible alterations (morphological and inflammatory) in the ocular cells of fetuses from mothers with insulin resistance exposed to saturated fatty acids through the period of pregnancy. METHODS: Wistar female rats were induced to develop insulin resistance before pregnancy. Fetuses' skulls were collected on the 20th day of intrauterine life. The rats were separated on the first day of management into two groups according to the diet applied: control group (C): diet containing soybean oil as a source of fat; and saturated fatty acid group (S): diet containing butter as a source of fat. RESULTS: Histological and immunohistochemical analyses have been conducted. The immunohistochemical analyses of interleukin 6, suppressor of cytokine signaling, 3 and signal transducer and activator of transcription 3 did not demonstrate alterations in the expression of proteins in the fetuses of mothers fed with a saturated fatty diet. Moreover, no histopathological changes were noticed between groups. CONCLUSION: The saturated fatty diet does not induce tissue changes or activate the Janus kinase/signal transducer and activator of transcription signaling pathway during eye development in the fetuses of mothers with insulin resistance.


Insulin Resistance , Janus Kinases , Rats, Wistar , Signal Transduction , Animals , Female , Pregnancy , Signal Transduction/drug effects , Insulin Resistance/physiology , Janus Kinases/metabolism , Fatty Acids/analysis , Dietary Fats/pharmacology , Dietary Fats/adverse effects , Fetus/drug effects , Immunohistochemistry , STAT3 Transcription Factor/metabolism , Interleukin-6/analysis , Interleukin-6/metabolism , Rats , Eye/embryology , Eye/drug effects
2.
J Nutr ; 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38484979

BACKGROUND: Low-carbohydrate and high-fat diet (LCHF) models have been widely explored as alternatives for treating obesity and promoting weight loss. Their effect is attributed to the change in energy substrate that stimulates ketogenic pathways that can metabolically overload the liver. However, little has been studied about the impact of lipid sources prioritized in the LCHF diet. OBJECTIVES: This study aims to evaluate the impact of different fat sources in the LCHF diet on markers of liver injury, oxidative stress, and epigenetics in obesity. METHODS: Adult male mice were initially induced to obesity by a high-fat and high-sugar diet for 10 wk. Subsequently, they underwent a weight-loss treatment intervention involving an LCHF diet with various sources of fats, including saturated, omega-3 (ω-3) (n-3), omega-6 (ω-6) (n-6), and omega-9 (ω-9) (n-9). At the end of the treatment, markers of liver injury, oxidative stress, and epigenetics were evaluated. RESULTS: The LCHF diet was effective in inducing weight loss. However, unsaturated lipid sources (omegas) exhibited superior outcomes. Specifically, the ω-9 group displayed diminished oxidative stress concentrations and decreased markers of liver injury. The ω-3 group demonstrated efficacy in modulating epigenetic markers, thereby reducing oxidative stress, mutagenicity, and markers of liver injury. Correlation tests demonstrated that there was an interaction between the activity of antioxidants and epigenetic enzymes. CONCLUSIONS: Our results suggest that LCHF diets associated with ω-3 and ω-9 have the potential for weight loss and liver health recovery in obesity through antioxidant and epigenetic mechanisms.

3.
Braz Oral Res ; 37: e116, 2023.
Article En | MEDLINE | ID: mdl-37970936

The aim of this systematic review was to evaluate published papers regarding the micronucleus assay in oral mucosal cells of patients undergoing orthodontic therapy (OT). A search of the scientific literature was made in the PubMed, Scopus, and Web of Science databases for all data published until November, 2021 using the combination of the following keywords: "fixed orthodontic therapy," "genetic damage", "DNA damage," "genotoxicity", "mutagenicity", "buccal cells", "oral mucosa cells," and "micronucleus assay". The systematic review was designed according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Nine studies were retrieved. Some authors demonstrated that OT induces cytogenetic damage in oral mucosal cells. Out of the nine studies included, two were classified as strong, five as moderate, and two as weak, according to the quality assessment components of the Effective Public Health Practice Project (EPHPP). Meta-analysis data revealed no relationship between mutagenicity in oral cells and OT in different months of treatment. At one month, the SMD = 0.65 and p = 0.08; after three months of OT, the SMD = 1.21 and p = 0.07; and after six months of OT, the SMD = 0.56 and p = 0.11. In the analyzed months of OT, I2 values were >75%, indicating high heterogeneity. In summary, this review was not able to demonstrate that OT induces genetic damage in oral cells. The study is important for the protection of patients undergoing fixed OT, given that mutagenesis participates in the multi-step process of carcinogenesis.


DNA Damage , Mouth Mucosa , Humans , Micronucleus Tests
4.
Rev Assoc Med Bras (1992) ; 69(12): e20230961, 2023.
Article En | MEDLINE | ID: mdl-37971137

OBJECTIVE: The objective of this study was to evaluate cytogenetic changes in individuals submitted to oral human immunodeficiency virus pre-exposure prophylaxis use through the micronucleus test in oral mucosa. METHODS: This study consisted of 37 individuals, of whom 17 comprised the pre-exposure prophylaxis group and 20 comprised the control group. A total of 2,000 cells per slide were analyzed for the determination of micronuclei, binucleation, nuclear buds, and cytotoxicity parameters: pyknosis, karyolysis, and karyorrhexis (KR), in a double-blind manner. The repair index was also evaluated in this setting. RESULTS: In the mutagenicity parameters, the pre-exposure prophylaxis group showed increased frequencies of micronuclei (p=0.0001), binucleation (p=0.001), and nuclear buds (p=0.07). Regarding the cytotoxicity parameters, there was an increase with a statistical difference (p≤0.05) in the karyorrhexis frequency (p=0.001). Additionally, the repair system efficiency decreased in the pre-exposure prophylaxis group. CONCLUSION: These results indicate that individuals undergoing pre-exposure prophylaxis use have geno- and cytotoxicity in oral mucosal cells.


Micronuclei, Chromosome-Defective , Pre-Exposure Prophylaxis , Humans , Micronuclei, Chromosome-Defective/chemically induced , HIV , Mouth Mucosa , Cytogenetic Analysis , DNA Damage
5.
Rev Assoc Med Bras (1992) ; 69(10): e20230397, 2023.
Article En | MEDLINE | ID: mdl-37729225

OBJECTIVE: The objective of this study was to evaluate possible cytogenetic changes in children and adolescents with human immunodeficiency virus on antiretroviral therapy, through the micronucleus test in oral mucosa. METHODS: This was a prospective study consisted of 40 individuals, of whom 21 comprised the human immunodeficiency virus group and 19 comprised the control group. Children and adolescents with human immunodeficiency virus were enrolled. The inclusion criteria were <18 years old and consent in participating in the study. The exclusion criteria were the presence of numerous systemic comorbidities, oral lesions, the habit of smoking, alcohol consumption, and X-rays or CT scans taken within 15 days prior to sample collection. A gentle scraping was performed on the inner portion of the jugal mucosa on both sides. A total of 2,000 cells per slide were analyzed for the determination of mutagenicity parameters as follows: micronuclei, binucleation, and nuclear buds. For measuring cytotoxicity, the following metanuclear changes were evaluated: pyknosis, karyolysis, and karyorrhexis, in a double-blind manner. The repair index was also evaluated in this setting. RESULTS: The human immunodeficiency virus group showed high frequencies of micronuclei (p=0.05), binucleated cells (p=0.001), and nuclear buds (p=0.03). In the cytotoxicity parameters, represented by the cell death phases, there was an increase with statistical difference (p≤0.05) in the karyorrhexis frequency (p=0.05). Additionally, repair index was decreased in the human immunodeficiency virus group. CONCLUSION: These results indicate that human immunodeficiency virus -infected individuals undergoing antiretroviral therapy have cytogenetic changes in oral mucosal cells.


HIV Infections , HIV , Adolescent , Child , Humans , Mouth Mucosa , Prospective Studies , Anti-Retroviral Agents , HIV Infections/drug therapy , Cytogenetic Analysis
6.
Diagn Cytopathol ; 51(12): 729-734, 2023 Dec.
Article En | MEDLINE | ID: mdl-37533363

BACKGROUND: This pilot study aimed to evaluate the mutagenic effects in cells of the oral mucosa after exposure to two different cone beam computed tomography (CBCT). METHODS: Eighteen adults were submitted to the different CBCT (Carestream CS8100 3D and I-CAT). The cells were collected immediately before the CBCT exposure and 10 days later, when the material was placed on a slide and stained using the Feulgen/Fast Green technique. Microscopic analysis counted micronuclei and other nuclear alterations, which are indicative of cytotoxicity such as pyknosis, karyolysis, karyorrhexis, and binucletion. 2000 cells were analyzed. The statistical analysis was performed with the Wilcoxon Signed-Rank test to compare the frequency of cellular alterations, and the Mann-Whitney U test to compare different CBCTs, both with a significance level of 5%. RESULTS: There was no statistically significant difference in the micronucleated cell count before and after the exposition to the ionizing radiation from I-CAT (p = .298) and CS8100 3D (p = .203) A significate increase of pyknosis (p < .001), karyolysis (p < .001), karyorrhexis (p < .001), and binucletion (p < .001) were noted on I-CAT CBCT. There was no statistically significant difference in cellular alterations in CS8100 3D CBCT. CONCLUSION: Despite the increase in micronuclei after exposure, this study indicates that there is no evidence of genotoxicity. On the other hand, the I-CAT CBCT produced cytotoxic effects.


Mouth Mucosa , Mutagens , Adult , Humans , Pilot Projects , Cell Nucleus , Cone-Beam Computed Tomography/adverse effects
7.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 69(10): e20230397, 2023. tab
Article En | LILACS-Express | LILACS | ID: biblio-1514683

SUMMARY OBJECTIVE: The objective of this study was to evaluate possible cytogenetic changes in children and adolescents with human immunodeficiency virus on antiretroviral therapy, through the micronucleus test in oral mucosa. METHODS: This was a prospective study consisted of 40 individuals, of whom 21 comprised the human immunodeficiency virus group and 19 comprised the control group. Children and adolescents with human immunodeficiency virus were enrolled. The inclusion criteria were <18 years old and consent in participating in the study. The exclusion criteria were the presence of numerous systemic comorbidities, oral lesions, the habit of smoking, alcohol consumption, and X-rays or CT scans taken within 15 days prior to sample collection. A gentle scraping was performed on the inner portion of the jugal mucosa on both sides. A total of 2,000 cells per slide were analyzed for the determination of mutagenicity parameters as follows: micronuclei, binucleation, and nuclear buds. For measuring cytotoxicity, the following metanuclear changes were evaluated: pyknosis, karyolysis, and karyorrhexis, in a double-blind manner. The repair index was also evaluated in this setting. RESULTS: The human immunodeficiency virus group showed high frequencies of micronuclei (p=0.05), binucleated cells (p=0.001), and nuclear buds (p=0.03). In the cytotoxicity parameters, represented by the cell death phases, there was an increase with statistical difference (p≤0.05) in the karyorrhexis frequency (p=0.05). Additionally, repair index was decreased in the human immunodeficiency virus group. CONCLUSION: These results indicate that human immunodeficiency virus -infected individuals undergoing antiretroviral therapy have cytogenetic changes in oral mucosal cells.

8.
Braz. oral res. (Online) ; 37: e116, 2023. tab, graf
Article En | LILACS-Express | LILACS, BBO | ID: biblio-1520509

Abstract The aim of this systematic review was to evaluate published papers regarding the micronucleus assay in oral mucosal cells of patients undergoing orthodontic therapy (OT). A search of the scientific literature was made in the PubMed, Scopus, and Web of Science databases for all data published until November, 2021 using the combination of the following keywords: "fixed orthodontic therapy," "genetic damage", "DNA damage," "genotoxicity", "mutagenicity", "buccal cells", "oral mucosa cells," and "micronucleus assay". The systematic review was designed according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Nine studies were retrieved. Some authors demonstrated that OT induces cytogenetic damage in oral mucosal cells. Out of the nine studies included, two were classified as strong, five as moderate, and two as weak, according to the quality assessment components of the Effective Public Health Practice Project (EPHPP). Meta-analysis data revealed no relationship between mutagenicity in oral cells and OT in different months of treatment. At one month, the SMD = 0.65 and p = 0.08; after three months of OT, the SMD = 1.21 and p = 0.07; and after six months of OT, the SMD = 0.56 and p = 0.11. In the analyzed months of OT, I2 values were >75%, indicating high heterogeneity. In summary, this review was not able to demonstrate that OT induces genetic damage in oral cells. The study is important for the protection of patients undergoing fixed OT, given that mutagenesis participates in the multi-step process of carcinogenesis.

9.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 69(12): e20230961, 2023. tab
Article En | LILACS-Express | LILACS | ID: biblio-1521509

SUMMARY OBJECTIVE: The objective of this study was to evaluate cytogenetic changes in individuals submitted to oral human immunodeficiency virus pre-exposure prophylaxis use through the micronucleus test in oral mucosa. METHODS: This study consisted of 37 individuals, of whom 17 comprised the pre-exposure prophylaxis group and 20 comprised the control group. A total of 2,000 cells per slide were analyzed for the determination of micronuclei, binucleation, nuclear buds, and cytotoxicity parameters: pyknosis, karyolysis, and karyorrhexis (KR), in a double-blind manner. The repair index was also evaluated in this setting. RESULTS: In the mutagenicity parameters, the pre-exposure prophylaxis group showed increased frequencies of micronuclei (p=0.0001), binucleation (p=0.001), and nuclear buds (p=0.07). Regarding the cytotoxicity parameters, there was an increase with a statistical difference (p≤0.05) in the karyorrhexis frequency (p=0.001). Additionally, the repair system efficiency decreased in the pre-exposure prophylaxis group. CONCLUSION: These results indicate that individuals undergoing pre-exposure prophylaxis use have geno- and cytotoxicity in oral mucosal cells.

10.
Crit Rev Toxicol ; 52(5): 389-396, 2022 05.
Article En | MEDLINE | ID: mdl-36102112

To evaluate, through a systematic review, the assessment of genotoxicity of glass ionomer cements in vitro and in vivo. A systematic review was performed with the problem, intervention, control, and outcomes (PICOS) strategy, aiming to answer the following question: "Can glass ionomer cements induce genetic damage in vitro and in vivo?" A systematic search was performed in the following electronic databases: PubMed (including MedLine), Web of Science, and Scopus. The quality of included studies was assessed using the Effective Public Health Practice Project (EPHPP). After the authors performed the review of all articles, a total of 13 manuscripts met all the inclusion criteria in the systematic review. Following the parameters of the EPHPP, eight articles were classified as strong or moderate quality. The other ones (five studies) were weak. Taken together our results demonstrated that, six studies reported genotoxicity of the modified glass ionomer cements tested and two studies concluded that the effect of genotoxicity was time dependent.


DNA Damage , Glass Ionomer Cements , Glass Ionomer Cements/toxicity
11.
Pathol Res Pract, v. 239, 154166, nov. 2022
Article En | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4881

Oral cancer is a disease with high incidence and mortality worldwide, and its treatment still needs to be improved. The search for new therapies using natural products is strongly supported, given the wide chemical range of these compounds. In addition, phytochemicals can exert antitumor activities by several mechanisms of action, including the modulation of non-coding RNAs. Thus, in this review, we discussed the role of non-coding RNAs, including circular RNAs, microRNAs, and long non-coding RNAs, in oral cancer and presented their potential as treatment targets using natural products. Some natural products capable of being used to treat oral cancer have been suggested.

13.
Asian Pac J Cancer Prev ; 21(5): 1235-1239, 2020 May 01.
Article En | MEDLINE | ID: mdl-32458627

BACKGROUND: The aim of this study was to evaluate cytotoxic, mutagenic and genotoxic effects on buccal mucosa and peripheral blood cells from marijuana and tobacco smokers. METHODS: For this purpose, a total of 45 volunteers were distributed into four groups: CTRL group (control): individuals who did not smoke marijuana or tobacco (n = 11); Group M: Marijuana smokers (n = 13); Group T: Tobacco smokers (n = 13); Group M + T: Smokers of both marijuana and tobacco (n = 08). RESULTS: Smokers of both marijuana and tobacco led an increase of micronucleated cells on buccal mucosa when compared to control group. The occurrence of karyolysis showed significant changes in this group as well. The comet assay data revealed genetic damage in peripheral blood cells for all groups of smokers. CONCLUSION: In summary, our results showed that marijuana and /or tobacco are able to induce genetic damage and cytotoxicity in oral and peripheral blood cells.


Blood Cells/pathology , Cannabis/adverse effects , Genomic Instability/drug effects , Mouth Mucosa/pathology , Smoke/adverse effects , Smoking/adverse effects , Adult , Blood Cells/drug effects , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Mouth Mucosa/drug effects , Prognosis , Young Adult
...